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A model formulation of the problem of the equilibrium shapes of a rotating oceanic lens of uniform density, the centre of which 
is at rest relative to the Earth is considered. All the components of the angular velocity of rotation of the Earth are taken into 
account, unlike, for example, in oceanography, where only one vertical component of this velocity is considered. The ocean 
surrounding the lens is assumed to be at rest, and its density is assumed to have a linear distribution. The equilibrium shape is 
the surface on which the pressures in the lens and in the ocean are equal, and here, on this surface, discontinuity of the tangential 
components of the velocities is permitted at points of both media. The exact solution of this problem, obtained earlier in [1] for 
the case of a uniform gravitational field of the Earth, is extended to the case of a potential gravitational field, approximating the 
actual field, taking into account of the variable nature of the centrifugal force field. The solution is approximate in nature and 
makes it possible, for example, to indicate the lower limit of the range of angular velocities of proper rotation of the lens, starting 
from which a more precise allowance for the gravitational field of the Earth is necessary, since it begins to have a considerable 
effect on the type of equilibrium shape sought. © 2004 Elsevier Ltd. All rights reserved. 

In the past 15-20 years, at depths in the ocean of  the order  of  i kin, vast vortical format ions have been 
found that differ f rom the surrounding water  in temperature ,  salinity, density, chemical composit ion,  
and transparency,  i.e. that  contain an aqueous  mass belonging in its hydrology to regions thousands  of  
ki lometres away f rom the points where the vortices are found. In shape, these format ions resemble 
convex lenses, and they have been  given this name.  Oceanic  lenses move thousands  of  kilometres, and 
they exist for several years. The mechanism responsible for their mot ion in the mass of  the ocean (chiefly 
towards the south-west in the nor thern  hemisphere)  and the cause of  their p ro longed  existence, of  the 
order  of  several years, have drawn at tent ion to this problem. The  quest ion of  the longevity of  the lenses 
is investigated below. So-called equilibrium shapes of  lenses are plotted, taking into account  the actual 
gravitational field of  the Earth.  

1. T H E  H Y D R O D Y N A M I C  E Q U A T I O N S  

We will consider a model  formulat ion of  the problem of the equilibrium shape of  a rotat ing lens whose 
centre  of  mass is at rest relative to the Ear th  in the case where all componen ts  of  the angular velocity 
of  the Ear th  are taken into account  (in oceanography,  when considering problems of  this kind, normally 
only the vertical componen t  is taken into account).  

We will select a system of  coordinates  Cxyz with its origin at the centre of  mass C of  the lens and 
connected  to the Earth.  The  x, y and z axes are directed eastward, northward,  and along the outward 
local normal  at the given point  respectively. Let  the centre of  mass of  the lens be at rest in the ocean. 
We will consider the complete  equat ions (see, for example, [2]) of  the steady mot ion  of  an ideal fluid 
in the body of  a lens in G r o m e k a - L a m b  form in the case of  its constant  density P = P0 

2 
[ ( 2 1 1 x r o t v ) x v ] + g r a d 2 _  p logradp+g (1.1) 

where v is the vector  of  relative velocities of  the lens particles, 1~ is the vector  of  the angular velocity 
of  rota t ion of  the Ear th  and p is the pressure. In the above dynamic equations, the Coriolis force of  
inertia (with a minus sign) is taken into account  by the corresponding term on the left-hand side 
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containing the vector ~ ;  the remaining terms correspond to the relative acceleration. The sum of the 
accelerations due to pure gravitation and the centrifugal force of inertia as a result of the rotation of 
the system Cxyz about the axis of rotation of the Earth corresponds to the vector g on the right-hand 
side. This vector is directed along the corresponding normal which, generally speaking, does not coincide 
in direction with the normal at the original of coordinates C. We will consider the gravitational field 
to be a potential field, characterized by a certain function Ugr. 

In view of the choice of the axes Cxyz, the component fa x = 0 and the projections D_ w and f~z are latitude- 
dependent constants. Similar equations can also be written for the ocean, be replacing the constant 
density 90 by a variable density 9. 

2. R E P R E S E N T A T I O N  OF THE V E C T O R  g 

Consider an arbitrary point on the ellipsoidal Earth corresponding to a geocentric latitude q0 and a radius 
vector R0 from the geometric centre of the Earth. We will assume, for example, the pure gravitation is 
characterized in the vicinity of the given point by a constant modulus of acceleration go = const and is 
directed strictly along a local radius vector towards the centre of the Earth. Then 

2 2 4 2 2 2 2 
g = g 0 + ~  R0cos q0-2g0~ R0cos q~ 

2 . 2 . 
gosinc¢ = f2 Rocosqosmqt, gsintx = g~ Rocosqosmqo, Ilt = 0~+q~ 

where {x is the angle between the radius vector of the point considered and the local vertical. In particular, 
by virtue of this choice of angles, the components of the vector ~ on the left-hand side of Eq. (1.1) 
have the form 

f~y = ~cosq), ~2 z = f2sinq) 

3. THE H Y D R O S T A T I C S  OF THE O C E A N  

From the equations of hydrostatics 

1 Op 1 Op 1 Op _ 0 (3.1) 
g x - ~ x x  = 0, g y - ~ y  = 0 ,  gz pa  z 

under conditions of a plane-parallel gravitational field of the Earth with vertical axis z it follows that 

ap/3x  = Op/Oy = O, -Pgo = ap/az  

where go : const. This system has the solution p(x,  y, z) - p ( z )  for any density p = p(z). In the more 
complex problem being considered, the static solution is naturally sought in a similar way, by specifying 
p as a function of the local "height" h, which depends on x, y, z. 

The question arises as to what the structure of the density of the ocean p(x, y, z) should be in the 
general case in order for the functionp always to exist. Along with the system of coordinates Cxyz, we 
will introduce into consideration the axes O X Y Z  connected to the centre of the Earth O. The O Z  axis 
is directed towards the North Pole, and the O Y  axis lies in the meridional plane of point C and is the 
equatorial axis of the Earth. The O X  axis is chosen such that the entire system O X Y Z  (like the system 
Cxyz) is right-handed. The formulae for the transition from one set of coordinates to another have the 
form 

X = - x ,  Y = R o c o s q ~ - y s i n ~ + z c o s g t ,  Z = R o s i n q ~ + y c o s ~ + z s i n  ~ 

The function p(x, y, z) will be constructed in the vicinity of point C. 
We will find the components of the overall accelerating g (due to gravitation on the centrifugal force) 

in axes connected to the Earth. We obtain 

Ug r ~ Ug r ~ Ug r 
gx - OX t- E~2X, gr = ~ + ~,~2y, gz - aZ 
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Introducing the 'general' potential function 

U = Ug r + ~2r2/2, r 2 = X 2 + y2 = R 2 _ Z 2 

we can write the components of the vector g as the gradient of the function U. We will seek a density 
9(X, Y, Z) (or indeed p = 9(h), where h = h(X, Y, Z)) such that the conditions of congruence with 
respect to the funct ionp in system (3.1) are satisfied, i.e. 

b(gxP) b(grP) b(gxP) b(gzP) b(grP) b(gz9) 
O ~  = b X  ' b Z  = b---X--' b Z  b Y  (3.2) 

We substitute into system (3.2) the vector function g, expressed in terms of the potential U. Assuming 
that the function U is twice continuously differentiable, we obtain the system of relations 

bpbU bpbU b p b U _  bpbU 8 9 b U _  bpbU 
OYbX - bXbY'  bZbX bXbZ'  bZbY bYbZ 

(3.3) 

in which the third relation is a consequence of the first two. 
Consider the first equation of system (3.3). It solution with respect to 9 has the form 

p(X, Y, Z) = ~l(Z,  U(X, Y, f (Z)) )  

(where ~ i  and f are arbitrary functions), since the corresponding system 

dX d Y dZ 
0 U/b Y b U/bX 0 

has two first integrals Z = const and U(X, Y, f(Z)) = const. In solving the second equation of system 
(3.3), we similarly obtain 

p(X, Y, Z) = ~2(Y, U(X, (p(r), Z)) 

Comparing both of the expressions obtained for the same function 9, we conclude that 9 may depend 
on Z and Yonly in a complex manner by virtue of the dependence of the function ~1 and ~2 on U. On 
further consideration, it can be shown thatf (Z)  = Z and q~(Y) -= Y. From this it follows that the solution 
of system (3.3) is 

9(X,Y ,Z)  = p(h(U)),  V = U(X,Y,Z)  

where h is an arbitrary, fairly continuous function. The function U itself can be regarded as h, but it is 
clear that the function U has the dimension of acceleration multiplied by the linear dimension. Therefore, 
it is more convenient to regard h as having the dimension of length h = -U/g*. Here  g,  is the 
characteristic acceleration of the gravitational force, for example, g .  = 9.81 m/s 2. Thus, the density in 
a statically balanced ocean retains a constant value along equipotential surfaces of the overall force 
function and is equal to 9 = 9(-U/g*) • 

We will find the pressure distribution in a statically balanced ocean. From the formulae of hydrostatics 
we have 

Op/OX = 9(-U/g.)OU/OX = (-g.)O(fp(h)dh)/OX 

and so on for the two other variables Y and Z. Hence 

P = P f  = Po - g*Ip(h) dh 

Assuming a linear density distribution in the vicinity of the characteristic level of the lenses h0, we have 
P = P0 + kho - kh (the notation k = 9oN2/g. is adopted, when N is the Brunt-Vfiisfilfi frequency at the 
level h0), and hence 

Pf = P0 - g.(P0 + kho)h + g. kh2/2 = Po + (P0 + kho)U + kU2/(2g.) = 

-- const + p0 U + k ( U -  Uo)2/(2g.), U o = -g.h o (3.4) 
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For example, substituting into this formula the quantity U = -Rgo + f22r2/2, which corresponds to 
the case of a gravitational field of constant modulus, we arrive at the expression 

P f  = Po + (Po + kho)(  ~2r212 - Rgo) - k( Rr2f~2/2 - go R2/2 - r4~-24](8go)) 

For the approximate gravitational potential of an ellipsoidal Earth, the following representation is 
often used (see, for example, [31) 

Ug r + I2R q( Z2 1)) (3.5) 
where p ~ 3.986 x 1014 m3/s 2,/2 ~ -1.082 x 10 .3 and Req is the equatorial radius of the Earth. From 
this we obtain the corresponding distribution of the pressure p? in the ocean. 

4. T H E  E Q U I L I B R I U M  S H A P E S  OF L E N S E S  

Let us consider the body of a lens. Here, the density is constant and is equal to 90. According to relations 
(1.1), the pressure within the lens is the sum of dynamic and static terms. The "dynamic" term, if a 
"layered" [1] velocity field within the lens is used (corresponding to the case of a plane-parallel 
gravitational field, which differs little from the actual field), is described by the formula given in [1], 
whereas the static term, in view of the fact that there is no density gradient within the lens (k = 0), 
according to (3.4) is equal to 

p = p0 U+cons t  

The solutions obtained enable us to formulate the hydrodynamic problem of the equilibrium shape 
of the lens. We will assume that the equilibrium shape of the lens is a surface, where the pressures on 
the side of the ocean and the lens are equal. At the same time, on this surface a jump in the tangential 
components of velocities is permitted [1]. As a result we have the following equation for the equilibrium 
surface. 

2 2 
OOCO, 2 2f'lyPOCOZ 

p(O, O, O) + ---~--- tm + 2~z)(x 2 + y ) - 2~yPocoyz  + co + 2 ~  z = const + + ( U  - UO) 2 (4.1) 

The value of U0 corresponds to the potential at the centre of the lens, point C, and co is the angular 
velocity of proper rotation of the lens. When considering the "total" gravitational field, instead of U it 
is necessary to substitute the expression U = Ug r + ~22(X ~ + Y2)/2, what Ugr is defined by formula (3.5). 
When considering the approximate plane-parallel case U -- - g . z ,  where g,  is the acceleration due to 
gravity at the given latitude. In the case of the "total" field there are radicals on the right-hand side of 
Eq. (4.1); in the plane-parallel case it describes a second-order surface. 

From an examination of the right-hand side of Eq. (4.1) it follows that, when the angular velocity co 
is negligibly small, the equilibrium surface corresponds to the condition U ~ U0 + const. This solution 
is of no practical interest. For example, in the case when f2 = 0 and the gravitational field is of constant 
modulus, the solution is a spherical layer covering the World Ocean. On the other hand, when [c0] ~ ~ ,  
Eq. (4.1) is converted into the equation of a circular cylinder c0(x 2 + y2) = const. Naturally, other 
equilibrium shapes are possible, depending on the specific values of the parameters, including the 
parameters characterizing the deviation of the gravitational field from the plane-parallel field adopted 
in [1]. The ellipsoidal equilibrium shape found earlier [1] (for anticyclonically twisted lenses) corresponds 
to the following condition which limits the angular velocity of proper rotation: co < 0, 2f2sinq0 - 
Icol > o. 

We will investigate the change in the equilibrium shape of a lens when the parameter co changes in 
this range. The results given below were obtained for the condition of either a plane-parallel gravitational 
field [1] or a field of "central" form (3.5), and also on the assumption that co = -~f2, where the number 

E (0, 1). The angle of latitude q0 was taken to be 20 °, and therefore it makes sense to examine the 
range -0.684U2 < co < 0. An equilibrium shape similar to an ellipsoid of revolution about the vertical 
axis corresponds to the plane-parallel case; let the horizontal semi-axis of this be equal to 20 km; the 
size along the local vertical (it is similar to the length of the vertical semi-axis of the ellipsoid) is readily 
calculated in the case. 
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We will describe the characteristic deviations of the cross-sectional shapes at various levels z of the 
equilibrium surface obtained using the gravitational potential (3.5) (we will call such a surface "new") 
from the corresponding cross-sectional shapes of the "old" surface, corresponding to a plane-parallel 
field. Note that in the latter case the cross-sections are always circles of radius Rz depending on z, with 
centres displaced by an amount yo(z) -- 2D.yZ/(m + 2~z) along the y axis. The values of the constants 
90, m and f~ in formula (4.1) were taken to be the same in the two cases. The difference in pressures 
p(0, 0, 0) - const at the centre of the lens and in the ocean at the level z = 0 was selected to be identical, 
i.e. such that in the case of a plane-parallel field the quantity Rz(z = 0) is equal to 20 kin. The square 
of the Brunt-Vfiisfilfi frequency was taken to be equal to N 2 = 7 x 10 -6 s -z. 

As shown by calculations, the equilibrium shapes in the case of potential (3.5) are surfaces laying 
within the "old" equilibrium ellipsoid. The cross-sections of this surface at various z levels are smooth 
ovals lying within the "old" circles. The symbol A will be used to denote the distance between the "old" 
and "new" cross-sections at the corresponding z levels, measured from rays issuing from the centres of 
the "old" circles. At it turned out, the values of A possess extremal properties, corresponding to rays 
in the positive and negative directions of they axis, and this gives the deviations Ay+ and @_. By analogy, 
we also consider the quantities Ax+ and Ax_ , where, by virtue of a certain symmetry of the formulae, 
&+ = & _ = & .  

The case m = -0.2~. The given ratio of the angular velocities is similar to that actually observed. The 
maximum value of the z coordinate of the "old" ellipsoid (the vertical "dimension") is equal to Zmax = 
171.04 m; the maximum magnitude of the displacements of the centres of the circlesy0max -- 664.11 m 
corresponds to this. The ratio of the major and minor semi-axes of the "old" ellipsoid amounts to 116.93. 

The extremum values of the z coordinate of the "new" surface are similar in modulus and amount 
to =_+ 168.36 m. From an analysis of the numerical results, a number of conclusions can be drawn 
concerning the magnitudes of A. The greatest of the discrepancies A between the "old" and "new" 
surfaces is observed in the positive direction of they  axis, and here Ay+ (curve 3 in Fig. 1) increases as 
Izl increases. None of the quantities Ay+, ky_ and A x differs greatly. Figure 1 also presents the even 
function Rz(z) (curve 1) corresponding to the "old" surface; the function ky+(Z) is almost even. Note 
that all quantities in Fig. 1 are given, albeit in different scales (along the horizontal) in metres. The 
greatest discrepancy between the points of the "old" and "new" surfaces of equilibrium obviously occurs 
in the plane z = 0 and amounts to about 1.5%. 

Qualitatively, the form of the "old" and "new" surfaces (in the form of "cross-sections" along z) are 
shown in Fig. 2. The dashed curves show the contours of the "cross-section" of the equilibrium shape 
corresponding to the case of a plane-parallel gravitational field, and the solid curves show those 
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corresponding to the case of the "total" field. The centres of the "old" circles lying on the above- 
mentioned liney = yo(z) are shown by the dark points. The centres of the "new" cross-sections are shown 
by the light points - they lie on an (almost) straight line parallel to y = yo(z), slightly displaced to the 
south. In the case in question this displacement amounts to about 12 m but, when the angular velocity 
co is reduced further, it increases markedly. The bordering lines drawn through sections whose contours 
are given by the dashed and solid lines define the "old" and "new" surfaces of equilibrium. They are 
not shown in Fig. 2. 

The case co = -0.02f2. The maximum vertical "dimension" of the "old" ellipsoid Zm~x = 63.35 m, to 
which the maximum magnitude of displacements of the centres of the circles Y0max = 179.30 m 
corresponds. The ratio of the major and minor semi-axes of the "old" ellipsoid is 315.70. 

The extremum values of the z coordinate of the "new" surface practically coincide (in modulus), i.e. 
z = 55.72 m. The values of Ay+ increase from 2487 m at z = 0 to 7181 m at z = 55 m. The graphs of 
Ay+ and Rz as functions of z in this case are represented by curves 4 and 2 in Fig. 1. 

The case o3 = -0.005~2. The maximum vertical dimension of the "old" ellipsoid Zma x = 32 m, to which 
the maximum magnitude of the displacements of the centres of the circles Y0max = 88 m corresponds. 
The ratio of the major and minor semi-axes of the "old" ellipsoid is 624. The maximum vertical dimension 
of the lens corresponding to the "new" equilibrium shape amounts to about 15 m. A deviation Ay+ = 
13 528 m occurs at the level z = 0. 

The above results indicate that, in the case when co = -0.02f2, the two shapes differ roughly by 10%, 
and, for an angular velocity reduced by a factor of 4, the effect of gravitational factors on the equilibrium 
shape can be decisive. It must be pointed out, however, the more accurate allowance for the effect of 
gravitational factors requires the constructing of a more accurate velocity field within the lens than that 
proposed earlier [1]. 
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